Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis
نویسندگان
چکیده
Transport-related genes significantly affect bacterial antibiotic resistance. However, the effects of these genes and their regulation of bacterial drug resistance in several mycobacterial species, including the fast-growing Mycobacterium smegmatis, the pathogen M. tuberculosis and M. avium have not been clearly characterized. We identified Ms4022 (MSMEG_4022) as a novel TetR family regulator that activates the expression of seven transport-related genes and affects drug resistance in M. smegmatis. Overexpression of Ms4022 inhibited M. smegmatis growth and enhanced mycobacterial resistance to the anti-tuberculosis drug rifampicin (RIF). By contrast, the Ms4022-deleted mycobacterial strain has shown sensitive to RIF. Ms4022 recognized three 19 bp non-palindromic motifs containing a 9 bp conserved region at their 5' end and it directly regulated seven transport-related genes, which affects mycobacterial resistance to RIF. Overexpression of three of seven transport-related genes (Ms1448, Ms1613, and Ms5278) inhibited the growth of M. smegmatis. This study improves our understanding of the function of mycobacterial transport-related genes and their regulation of bacterial drug resistance.
منابع مشابه
A TetR-like regulator broadly affects the expressions of diverse genes in Mycobacterium smegmatis
Transcriptional regulation plays a critical role in the life cycle of Mycobacterium smegmatis and its related species, M. tuberculosis, the causative microbe for tuberculosis. However, the key transcriptional factors involved in broad regulation of diverse genes remain to be characterized in mycobacteria. In the present study, a TetR-like family transcriptional factor, Ms6564, was characterized...
متن کاملA Novel TetR-Like Transcriptional Regulator Is Induced in Acid-Nitrosative Stress and Controls Expression of an Efflux Pump in Mycobacteria
Mycobacterium tuberculosis has the ability to survive inside macrophages under acid-nitrosative stress. M. tuberculosis Rv1685c and its ortholog in M. smegmatis, MSMEG_3765, are induced on exposure to acid-nitrosative stress. Both genes are annotated as TetR transcriptional regulators, a family of proteins that regulate a wide range of cellular activities, including multidrug resistance, carbon...
متن کاملLtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis
In a bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)/transcription factor binding screen, we identified Mycobacterium smegmatis Ms6479 as the first c-di-GMP-responsive transcriptional factor in mycobacteria. Ms6479 could specifically bind with c-di-GMP and recognize the promoters of 37 lipid transport and metabolism genes. c-di-GMP could enhance the ability of Ms6479 to bind to it...
متن کاملA Novel marRAB Operon Contributes to the Rifampicin Resistance in Mycobacterium smegmatis
The multiple-antibiotic resistance regulator (MarR) plays an important role in modulating bacterial antibiotic resistance. However, the regulatory model of the marRAB operon in mycobacteria remains to be characterized. Here we report that a MarR, encoded by Ms6508, and its marRAB operon specifically contribute to rifampicin (RIF) resistance in Mycobacterium smegmatis. We show that the MarR reco...
متن کاملbkaR is a TetR-type repressor that controls an operon associated with branched-chain keto-acid metabolism in Mycobacteria
This study describes how bkaR, a highly conserved mycobacterial TetR-like transcriptional repressor, regulates a number of nearby genes that have associations with branched-chain keto-acid metabolism. bkaR (MSMEG_4718) was deleted from the nonpathogenic species Mycobacterium smegmatis, and changes in global gene expression were assessed using microarray analysis and reporter gene studies. bkaR ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016